LAUREOXOLANE, A NEW BROMO ETHER FROM LAURENCIA NIPPONICA

Akio Fukuzawa,^{*} Mya Aye, Yoshiaki Takaya, Hideto Fukui, Tadashi Masamune, and Akio Murai^{*} Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060, Japan

Abstract: The structure of a new bromo ether, isolated from the title alga and designated as laureoxolane, was determined by its physical properties and synthetic correlation.

The title alga is a unique <u>Laurencia</u> species characterized by the fact that even the populations growing in closed distances produce occasionally different second metabolites as a major component.¹⁾ In our continuing investigation of the <u>L. nipponica</u> collected at Kamoenai, Hokkaido in June, we have now isolated a new bromo ether having both of oxirane and oxolane rings. We wish to report herein the structure and absolute configuration of this compound <u>1</u>.

Neutral ether-soluble oil (37 g) obtained from methanol extract of the wet alga (12 Kg) was fractionated repeatedly by chromatography over silica gel to give laureepoxide $(\underline{2})^{1}$) and laurencin $(\underline{3})$.²) Crude fraction eluted with hexane and ethyl acetate (9:1) was rechromatographed with HPLC to yield 27 mg of laureoxolane ($\underline{1}$) as a colorless unstable oil.

Laureoxolane $(\underline{1})$, $C_{15}H_{21}O_{3}Br$, FI-MS, m/z 328 and 330 (M⁺), $[\alpha]_{D}^{2^{+}} + 21.9^{\circ}$ (c 0.32, CHCl₃), has IR and UV absorptions due to conjugated (\underline{E})-enyne group [IR (neat) 3300, 2100, 1640 and 960 cm⁻¹; UV (EtOH) 224 (ϵ 8600) and 230 nm (infl. ϵ 7700)], a hydroxyl and ether groups (IR 3450 and 1100 cm⁻¹).

Measurement of the ¹H NMR (400MHz) combined with spin decoupling led to complete assignment of all protons (Table 1) and elucidation of the planar structure of <u>1</u> to be straight-chained skeleton as shown in Fig. 1.

H ₁ 2,82 d	2.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 1. ¹H NMR data of <u>1</u> (400 MHz, CDC1₃)

Fig. 2. Geminal coupling constant of the oxetane derived from laureatin.

Fig. 3. NOE experiment of laureoxolane.

The chemical shift of each of proton signal at δ 4.62 (H₉) and 3.96 (H₁₀) suggested that these protons should be assigned to a bromo methine and a methine bearing ether oxygen, respectively. The presence of the oxolane ring was supported by geminal coupling constant (J=15 Hz) of the methylene group at C₈ (Fig. 2, 3), by the occurrence of IR absorption at 1100 cm⁻¹ (vC-0-C) and by the absence of that around 970 cm⁻¹ due to oxetane.³)

The compound <u>1</u> consumed 3 moles of hydrogen over Pd-C in ethanol, giving hexahydrolaureoxolane (<u>4</u>), $C_{15}H_{27}O_3Br$, $[\alpha]_D^{24} + 37.5^\circ$ (c 0.17, CHCl₃), [FI-MS, m/z 334 and 336 (M⁺); IR 3500, 1100 and 1070 cm⁻¹; ¹³C NMR & 80.5 (d), 78.9 (d), 73.4 (d), 59.7 (d), 55.4 (d), 54.9 (d), 39.2 (t), 35.7 (t), 33.4 (t), 31.7 (t), 25.3 (t), 24.9 (t), 22.5 (t), 13.9 (q) and 9.7 (q)]. Treatment of <u>4</u> with Zn-Cu couple⁴) in acetic acid afforded two products, which were separated over silver nitrate-impregnated silica gel to give isomeric unsaturated glycols <u>5Z</u>, (¹H NMR & 5.59 and 5.54, each 1H, dt, J=10.9, 6.8 Hz) and

Scheme 1.

<u>5E</u>, (δ 5.52, 2H, m; IR 970 cm⁻¹). Acetylation of <u>5Z</u> and <u>5E</u> yielded the corresponding diacetates <u>6Z</u>, [α]²_D³ +16.2° (c 0.16, CHCl₃) and <u>6E</u>, [α]²_D³ +22.2° (c 0.2, CHCl₃), respectively. The former was subjected to deepoxidation with potassium selenocyanate⁵) in methanol, followed by acetylation to give diene <u>7</u>, whose ¹H NMR spectra showed two-proton multiplet at δ 2.72 (2H, m) flanked by two double bonds. Hydrogenation of <u>7</u> yielded saturated diacetate <u>8</u> [α]²_D³ +28.2° (c 0.21, CHCl₃), which was identical to the authentic sample derived from laurencin (<u>3</u>).²) This result indicated that the absolute configurations at C₆ and C₇ were R and R. Relative and absolute configurations at C₉ and C₁₀ on oxolane moiety were elucidated by NOE experiment (Fig. 3). Irradiation of H₇ at δ 4.25 showed large NOE on H₈₈ at δ 2.40. Medium NOE was observed between H_{10 α} and H_{8 α} as well as H₉. In addition, small NOE was detected between H_{10 α} and H₆. These spectral results indicated that orientation of two side chains of the oxolane should be <u>trans</u> and therefore, the configurations at C₉ and C₁₀ should be S and S.

On the other hand, the relative stereochemistry of the oxirane moiety was assumed to be <u>trans</u> according to its coupling constant $(J=2.4 \text{ Hz})^{6}$ between two methine protons at δ 2.75 and 2.78, and the absolute configurations at C_{12} and C_{13} were determined by synthetic correlation with epoxy-diacetate <u>6Z</u> as shown in Scheme 2.

Scheme 2. Bn=benzyl; Bz=Benzoyl. Reagents: i) BuLi-CuCN, THF, -45° C, 2h (100%): ii) Me₂C(OMe)₂, PPTS, CH₂Cl₂, rt, 5h (79%): iii) Li-NH₃, -78°C, 16h (91%): iv) MsCl, Et₃N, CH₂Cl₂, -78°C+rt, 3h (100%): v) 2M HCl, MeOH; Ba(OH)₂, CH₂Cl₂, H₂O, rt, 3h (80%): vi) LiC=CH·EDA, DMSO, 0°C+rt, 5h (83%): vii) Ti(0ⁱPr)₄-^tBuOOH, diisopropyl L-(+)-tartarate, CH₂Cl₂, -20°C, 4h: viii) BzCl, Et₃N, DMAP, rt (18% from 13): ix) 12, BuLi, BF₃·Et₂O, THF, -78°C, 1h (51%): x) MsCl, Et₃N, C₆H₆, CH₂Cl₂, 0°C+rt, 2d: xi) 1M HCl, MeOH, rt, 2h (70%): xii) 1M KOH, EtOH, rt, 1h (65%): xiii) Ac₂O, Py, DMAP, rt, 7h (100%): xiv) H₂, Pd-CaSO₄, quinoline, rt, 9h (70%).

In order to synthesize epoxydiacetate 9, (2R, 3R)-L-(+)-tartaric acid wastransformed into (2S,3S)-1-benzyloxy-3,4-epoxy-2-butanol (10),⁷) corresponding to $C_5 \sim C_8$ unit with two asymmetric centers at C_6 and C_7 of laureoxolane $(\underline{1})$. Elongation using butyllithium and copper cyanide and then lithium acetylide ethylenediamine complex was performed by known procedures to afford the acetylenic acetonide $\frac{12}{2}$, $C_{13}H_{22}O_2$, $[\alpha]_D^*$ -19.8 °(c 4.78, CHCl₃), via epoxy alcohol <u>11</u>.⁸⁾ The $C_{11} \sim C_{15}$ unit was synthesized from 1-penten-3-ol $(\underline{13})$. Kinetic Sharpless epoxidation of 13, followed by benzoylation gave $(2R,3S)-1,2-epoxy-3-benzoyloxypentane (14), [\alpha]_{D}^{24} -7.6$ (c 0.64, CHCl₃). Coupling reaction of 14 and 12 by Yamaguchi method afforded $15,9^{9}$ [a] $_{1}^{+}$ +8.5° (c 1.0, $CHCl_3$). Mesylation of 15, followed by treatment with acid and then alkali afforded the epoxydiol <u>16</u>. Acetylation of <u>16</u> and hydrogenation over Lindlar catalyst yielded (6S,7S,12S,13S)-epoxydiacetate (9), $[\alpha]_D^{\pm 4}$ -11.2°(c 0.50, $CHCl_3$),¹⁰⁾ which was identical with <u>6Z</u> in all respects except the sign of optical rotation. Consequently, the whole structure of laureoxolane was determined as 1.

Laureoxolane $(\underline{1})$ is closely related to laureepoxide $(\underline{2})$ which also has oxirane at C₆ and C₇, along with oxolane at C₁₀ and C₁₃. The co-occurrence of $\underline{1}$ and $\underline{2}$ in the same specimen suggests that enzymatic bromoether formation reaction in <u>vivo</u> would not be so regioselective and that bromo-cation might initiate the reaction.

References and Notes

- 1) A. Fukuzawa and E. Kurosawa, Tetrahedron Lett., 1980, 21, 1471.
- 2) T. Irie, M. Suzuki, and T. Masamune, Tetrahedron, 1969, 24, 4193.
- 3) (a) T. Irie, M. Izawa, and E. Kurosawa, Tetrahedron Lett., 1968, 2091.
 (b) The coupling constant (J=10.7 Hz) of geminal protons at C₈ of the oxetane (Fig. 2) derived from laureatin gave evidence for the presence of five membered ether in <u>1</u>.
- 4) Organic Synthesis, Coll. Vol. 5, 855 (1973).
- 5) J. M. Behan, A. W. J. Stone, and M. J. Wright, J. Chem. Soc., Perkin I, 1975, 1216.
- R. M. Silverstein, G. C. Bassler, and T. C. Morrill, "Spectrometric Identification of Organic Compounds," 4th ed, John Wiley & Sons, New York (1981), P. 235.
- E. Hunggerbuhler, D. Seebach, and D. Wasmuth, Angew. Chem., 1979, <u>91</u>, 1025.
- A. Fukuzawa, H. Sato, M. Miyamoto, and T. Masamune, Tetrahedron Lett., 1986, <u>27</u>, 2901.
- 9) M. Yamaguchi and I. Hirano, Tetrahedron Lett., 1983, 24, 391.
- 10) Treatment of (2S,3R)-1,2-epoxy-3-benzoyloxypentane with the same procedures gave <math>(6S,7S,12R,13R)-epoxydiacctate, $[\alpha]_D^{24}$ -0.8°(c 0.25, CHCl₃), which was diastereoisomer of <u>9</u>.

(Received in Japan 21 April 1989)